
Sender: Guillaume.Poupard@ens.fr
Date: Fri, 09 Apr 1999 10:19:24 +0200
From: Guillaume Poupard <Guillaume.Poupard@ens.fr>
Organization: Ecole Normale Superieure
X-Mailer: Mozilla 3.04 (X11; I; SunOS 5.7 sun4u)
To: aesfirstround@nist.gov
CC: Serge Vaudenay <Serge.Vaudenay@ens.fr>
Subject: Implementation of DFC on low cost smart cards

Please find attached to this e-mail the final Postscript version of our
paper "Decorrelated Fast Cipher: an AES Candidate well suited for low
cost smart cards applications" of CARDIS'98, co-authored with Serge
Vaudenay. This "OFFICIAL Comment" may be of some interest for the
evaluation of the implementability of DFC on various systems.

Regards,

Guillaume Poupard

--
 Guillaume POUPARD (DMI/GRECC) || mailto:Guillaume.Poupard@ens.fr
 Ecole Normale Superieure || http://www.dmi.ens.fr/~poupard/
 45, rue d'Ulm || +33-01 44 32 20 48
 75005 Paris, France || +33-01 44 32 20 80 (fax)

Decorrelated Fast Cipher: an AES Candidate

well suited for low cost smart cards applications

Guillaume Poupard and Serge Vaudenay

Ecole Normale Sup�erieure, Laboratoire d'informatique
45 rue d'Ulm, F-75230 Paris Cedex 05, France

email: fGuillaume.Poupard,Serge.Vaudenayg@ens.fr

Abstract. In response to the call for candidates issued by the Na-
tional Institute for Standards and Technologies (the Advanced Encryp-
tion Standard project) the Ecole Normale Sup�erieure proposed a candi-
date called DFC as for \Decorrelated Fast Cipher", based on the decor-
relation technique that provides provable security against several classes
of attacks (in particular the basic version of Biham and Shamir's Dif-
ferential Cryptanalysis as well as Matsui's Linear Cryptanalysis). From
a practical point of view, this algorithm is naturally very e�cient when
it is implemented on 64-bit processors. In this paper, we describe the
implementation we made of DFC on a very low cost smart card based
on the Motorola 6805 processor. The performances we obtain prove that
DFC is also well suited for low cost devices applications.

Since the beginning of commercial use of symmetric encryption (with block
ciphers) in the seventies, construction design used to be heuristic-based and
security was empiric: a given block cipher was considered to be secure until
some researcher published an attack on.

The Data Encryption Standard [1] initiated an important open research
area, and some important cryptanalysis methods emerged, namely Biham and
Shamir's di�erential cryptanalysis [4] and Matsui's linear cryptanalysis [11], as
well as further generalizations. Nyberg and Knudsen [14] showed how to build toy
block ciphers which provably resist di�erential cryptanalysis (and linear crypt-
analysis as well as has been shown afterward [3]). This paradigm has successfully
been used by Matsui in the MISTY cipher [12, 13]. However Nyberg and Knud-
sen's method does not provide much freedom for the design, and actually, this
paradigm leads to algebraic constructions. This may open the way to other kind
of weaknesses as shown by Jakobsen and Knudsen [8].

In response to the call for candidates for the Advanced Encryption Standard
(AES) which has been issued by the National Institute of Standards and Tech-
nology (NIST) the ENS proposed in [6] the Decorrelated Fast Cipher (DFC)1.
It is a block cipher which is faster than DES and hopefully more secure than
triple-DES. It accepts 128-bit message blocks and any key size from 0 to 256.
We believe that it can be adapted to any other cryptographic primitive such as

1 See http://www.dmi.ens.fr/~vaudenay/dfc.html

stream cipher, hash function, MAC algorithm. The new design of DFC combines
heuristic construction with provable security against a wide class of attacks. Un-
like the Nyberg-Knudsen paradigm, our approach is combinatorial. It relies on
Vaudenay's paradigm [15{19]. This construction provides much more freedom
since it can be combined with heuristic designs.

In [6] we provided proofs of security against some classes of general simple
attacks which includes di�erential and linear cryptanalysis. This result is based
on the decorrelation theory. We believe that this cipher is also \naturally" secure
against more complicated attacks since our design introduced no special algebraic
property. Our design is guaranteed to be vulnerable against neither di�erential
nor linear cryptanalysis with complexity less than 281 encryptions. We believe
that the best attack is still exhaustive search. Another theoretical result claims
that if we admit that no key will be used more than 243 times, then the cipher
is guaranteed to resist to any iterated known plaintext attack of order 1.

From a practical point of view, the main computations are an a�ne map-
ping x 7! P = ax + b where a, b and x are 64-bit operands and P a 128-bit
quantity, followed by two reductions modulo 264 + 13, and modulo 264 respec-
tively. Modern computers, like those of the AXP family, have properties that
make the implementation of DFC especially e�cient because of there native 64-
bit processor. As an example, we are able to encrypt 500 Mbps using the new
Alpha processor 21264 600MHz provided that the microprocessor can input the
plaintext stream and output the ciphertext stream at this rate (see [7]).

The aim of this paper is to describe the implementation we made of DFC on
a very low cost smart card based on a 8-bit processor Motorola 6805, using less
than 100 bytes of RAM and without the help of any kind of crypto-processor.
This proves that DFC is well suited for a large range of applications.

Section 1 gives a high level overview of DFC (a full description can be found in
[6]). Section 2 explains how to e�ciently deal with the multiprecision arithmetic
needed to implement the algorithm. Finally, section 3 exposes our implementa-
tion and the performances we obtained.

1 De�nition of DFC

Notations

All objects are bit strings or integers. To any bit string s = b1 : : : b` we associate
an integer �s = 2`�1b1 + : : :+ 2b`�1 + b` The converse operation of representing
an integer x as an `-bit string is denoted jxj`. The concatenation of two strings
s and s0 is denoted sjs0. We can truncate a bit string s = b1 : : : b` (of length at
least n) to its n leftmost bits truncn(s) = b1 : : : bn.

High Level Overview

The encryption function DFC operates on 128-bit message blocks by means
of a secret key K of arbitrary length, up to 256 bits. Encryption of arbitrary-

length messages is performed through standard modes of operation which are
independent of the DFC design (see [2]).

The secret key K is �rst turned into a 1024-
R0 R1

R9 R8

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

RK1

RK2

RK3

RK4

RK5

RK6

RK7

RK8

??

bit \Expanded Key" EK through an \Expanding
Function" EF, i.e. EK = EF(K). The EF function
performs a 4-round Feistel scheme (see Feistel [5]).

The encryption itself performs a similar 8-round
Feistel scheme. Each round uses the \Round Func-
tion" RF. This function maps a 64-bit string onto a
64-bit string by using one 128-bit string parameter.

Given a 128-bit plaintext block PT, we split it
into two 64-bit halves R0 and R1 so that

PT = R0jR1

Given the 1024-bit expanded key EK, we split
it into eight 128-bit strings

EK = RK1jRK2j : : : jRK8

where RKi is the ith \Round Key".
We build a sequence R0; : : : ; R9 by the Equation

Ri+1 = RFRKi
(Ri)�Ri�1 (i = 1; : : : ; 8)

We then set CT = DFCK(PT) = R9jR8.
The RF function (as for \Round Function") is

fed with two 64-bit parameters, a and b. It processes
a 64-bit input x and outputs a 64-bit string. We
de�ne RFajb(x) =

CP
������a� �x+�b

�
mod (264 + 13)

�
mod 264

��
64

�

where CP (as for \Confusion Permutation") is a
permutation over the set of all 64-bit strings. It uses
a look-up table RT (as for \Round Table") which
takes a 6-bit integer as input and provides a 32-bit string output.

Let y = yljyr be the input of CP where yl and yr are two 32-bit strings. We
de�ne

CP(y) =
�
�
�(yr �RT(trunc6(yl)))j(yl �KC) +KD mod 264

��
�
64

where KC is a 32-bit constant string, and KD is a 64-bit constant string.
In order to generate a sequence RK1; : : : ;RK8 from a given keyK represented

as a bit string of length at most 256, we �rst pad K with a constant pattern KS
in order to make a 256-bit \Padded Key" string by PK = trunc256(KjKS). This
allows any key size from 0 to 256 bits.

Then, the key scheduling algorithm consists in using the previously de�ned
encryption algorithm reduced to 4 rounds instead of 8. This enables an e�cient
and secure (see [6]) generation of expanded keys without increasing the size of
the program. We can observe that the key scheduling algorithm complexity is
the same as the complexity of the encryption of four 128-bit blocks of data.

On the
y encryption and decryption

The expanded key may be too large (128 bytes) to be stored in the RAM of some
low cost smart cards. Anyway, it can be computed on the
y during each block
encryption in such a way that only two round keys RKi are stored simultaneously
in memory. This makes the algorithm 5 times slower because the key setup
requires 8 encryption using a 4-round version of DFC.

This strategy can also be used for decryption using a minor modi�cation of
the key scheduling algorithm based on the precomputation of the last two round
keys RK7 and RK8.

2 Multiprecision Arithmetic

The internal operations deal with 64- and 128-bit numbers so we have to imple-
ment multiprecision arithmetic. The key operations, used to compute RF, are
an a�ne mapping x 7! P = ax+ b where a, b and x are 64-bit operands and P

a 128-bit quantity, followed by two reductions modulo 264+13, and modulo 264

respectively.
The implementation of the multiprecision multiplication follows a classical

scheme, without any optimization, such as Karatsuba's, which would not be
worthwhile for so small operands. For the modular reduction, we use the follow-
ing method. First we write

P = Q� 264 +R (1)

where R is the remainder of the Euclidean division of P by 264 (no computation
is required for this). Then we rewrite (1) as:

P = Q� (264 + 13) +R� 13�Q (2)

As we want to reduce modulo 264 + 13, the quantity Q(264 + 13) disappears.
However, this is not yet perfect as we have to deal with two cases: R� 13Q > 0
and R � 13Q < 0. To avoid this, we rewrite (2) as:

P = (264 + 13)� (Q� 13) + (13� (264 � 1�Q) + 182 +R) (3)

In (3), the quantity 264�1�Q is just the bitwise complement of Q. The modular
reduction thus consists of the easy evaluation of:

P 0 = 13� (264 � 1�Q) + 182 +R (4)

modulo 264 + 13. The result is always positive and, most of the time, greater
than 264+13. We thus perform a second reduction, using the same formula. We
rewrite (4)

P 0 = Q0 � 264 +R0 (5)

and we de�ne P 00 as

P 00 = 13� (264 � 1�Q0) + 182 +R0 (6)

The result P 00 veri�es 0 � P 00 < 2� 264 + 13 so the �nal value of the modular
reduction is P 00 if P 00 < 264+13 and P 00�(264+13) otherwise. These comparison
and subtraction can be performed very e�ciently because of the very special form
of the binary representation of 264 + 13.

Timing Attacks

Implementations must be such that computations of the modular multiplication
does not leak any information by time measurement (i.e. we must avoid tests
and conditional branches that depend on the computation). Otherwise this may
leak some information by Kocher's timing attacks [9].

The previous description of the modular reduction shows that the only step
that does not require a �xed number of clock cycles is the last one. Consequently
we always compute P 00 � (264 + 13) even if the result is note always used.

The main problem with timing attacks appears during the computation of
P = ax + b. Using the classical scheme for multiplication, di�erences of timing
may appear because of carry propagation. A simple but not really e�cient solu-
tion consists in removing all the conditional branches by propagating the carries
as far as possible even if they are zeros.

3 Implementation on Smart Cards

We have implemented DFC on a cheap smart card based on a 8-bit processor
Motorola 6805 running at 3.57 MHz. This microprocessor can perform very sim-
ple operations with two 8-bit registers. For example it can only perform rotations
of one bit. Furthermore, a byte multiplication is implemented.

The smart card possesses three kinds of memory, a ROM of 4 KB, an EEP-
ROM of 2 KB where the program and the data are stored and a 160-bytes RAM
where only 120-bytes can be used. Furthermore, the stack is automatically set
in its middle and consequently the available memory is not contiguous. The
communication rate is 19200 bits per second and the server is a simple PC.

Two implementations of DFC are proposed:

{ the �rst one performs the key scheduling just once and stores the expanded
key EK (1024 bits) in RAM. It needs 171 bytes of memory.

{ the second one needs 89 bytes of RAM but is 5 times slower because it
computes the expanded key during encryption of each block. Anyway, it
may be interesting for some applications to reduce the size of the RAM and
accordingly the cost of the used smart cards.

The amount of ROM needed to store the program and constant data is less
than two kilo-bytes. More precisely, the program needs 1600 bytes, half of which
are used by the multiplication P = ax + b for e�ciency reasons. Consequently,
the size of the program could be easily reduced at the cost of a slower execution.

The DFC algorithm depends on several constants whose total size is 348 bytes.
In order to convince that this design hides no trap-door, we choose the constants
from the hexadecimal expansion of the mathematical e constant. Furthermore,
the size of the data can be reduced to 268 bytes since a part of the RT table can
be reused for other constants.

The time needed to encrypt a 128-bit block is about 40.000 cycles (resp.
200.000 cycles for the second version). With a clock frequency of 3:57 MHz, our
implementation is able to encrypt 1428 bytes per second (resp. 285 bytes per
second). This is twice slower than the best known implementation of triple-DES
on the same platform and such a rate is similar to the amount of data the card
can exchange with the server per second.

Version 1 Version 2

RAM used 171 bytes 89 bytes
Size of the program
(see the appendix)

1600 bytes

Size of data 268 bytes
Size of the needed
EEPROM (or ROM)

< 2 KB

Cycles to encrypt
a 128 bit block

40 000 cycles 200 000 cycles

Key setup
(precomputation of EK)

160 000 cycles � 0

Blocks encrypted
per second at 3.57 MHz

89 blocks 18 blocks

Data encrypted
per second at 3.57 MHz

1428 bytes 285 bytes

Time to encrypt
a 128 bit block at 3.57 MHz

11 ms 56 ms

Performances of two implementations of DFC on a 6805 based smart card

4 Conclusion

Even if DFC seems to be designed for powerful computers, the implementation
we made of this algorithm on a very low cost smart card proves that it is well
suited for a large range of applications. Hardware-based implementations require
to implement the multiplication which may be painful for the designer, but
e�ciently possible. Although we did not investigate all possible applications, we
believe that there is no restriction on the implementability of DFC.

References

1. Data Encryption Standard. Federal Information Processing Standard Publication

46, U. S. National Bureau of Standards, 1977.
2. DES Modes of Operation. Federal Information Processing Standard Publication 81,

U. S. National Bureau of Standards, 1980.
3. K. Aoki, K. Ohta. Strict evaluation of the maximum average of di�erential prob-

ability and the maximum average of linear probability. IEICE Transactions on

Fundamentals, vol. E80-A, pp. 1{8, 1997.
4. E. Biham, A. Shamir. Di�erential Cryptanalysis of the Data Encryption Standard,

Springer-Verlag, 1993.
5. H. Feistel. Cryptography and computer privacy. Scienti�c American, vol. 228, pp.

15{23, 1973.
6. H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern,

S. Vaudenay. Decorrelated Fast Cipher: an AES Candidate. Submitted to the call
for candidate for the Advanced Encryption Standard issued by the National Insti-
tute of Standards and Technology.

7. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, R. Harley, A. Joux, P.
Nguyen, F. Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern, S. Vaudenay.
DFC Update. In the Proceedings from the Second Advanced Encryption Standard

Candidate Conference, National Institute of Standards and Technology, 1999.
8. T. Jakobsen, L. R. Knudsen. The interpolation attack on block ciphers. In Fast

Software Encryption, Haifa, Israel, Lectures Notes in Computer Science 1267, pp.
28{40, Springer-Verlag, 1997.

9. P. Kocher. Timing attacks in implementations of Di�e-Hellman, RSA, DSS and
other systems. In Advances in Cryptology CRYPTO'96, Lectures Notes in Com-
puter Science 1109, pp. 104{113, Springer-Verlag, 1996.

10. L. R. Knudsen, B. Preneel. Fast and secure hashing based on codes. In Advances

in Cryptology CRYPTO'97, Santa Barbara, Californie, U.S.A., Lectures Notes in
Computer Science 1294, pp. 485{498, Springer-Verlag, 1997.

11. M. Matsui. The �rst experimental cryptanalysis of the Data Encryption Standard.
In Advances in Cryptology CRYPTO'94, Santa Barbara, Californie, U.S.A., Lec-
tures Notes in Computer Science 839, pp. 1{11, Springer-Verlag, 1994.

12. M. Matsui. New structure of block ciphers with provable security against di�eren-
tial and linear cryptanalysis. In Fast Software Encryption, Cambridge, Royaume
Uni, Lectures Notes in Computer Science 1039, pp. 205{218, Springer-Verlag, 1996.

13. M. Matsui. New block encryption algorithm MISTY. In Fast Software Encryption,
Lectures Notes in Computer Science 1267, pp. 54{68, Springer-Verlag, 1997.

14. K. Nyberg, L. R. Knudsen. Provable security against a di�erential cryptanalysis.
Journal of Cryptology, vol. 8, pp. 27{37, Springer-Verlag, 1995.

15. S. Vaudenay. Provable security for block ciphers by decorrelation. In STACS 98,
Lectures Notes in Computer Science 1373, pp. 249{275, Springer-Verlag, 1998.

16. S. Vaudenay. The decorrelation technique home-page.
URL:http://www.dmi.ens.fr/~vaudenay/decorrelation.html

17. S. Vaudenay. Adaptive-Attack Norm for Decorrelation and Super-
Pseudorandomness. Tech. report LIENS-99-2, Ecole Normale Sup�erieure,1999.

18. S. Vaudenay. On the Lai-Massey Scheme. Tech. report LIENS-99-3, Ecole Normale
Sup�erieure, 1999.

19. S. Vaudenay. Resistance against General Iterated Attacks. To appear in Advances

in Cryptology EUROCRYPT' 99, Prague, Czech Republic, Lectures Notes in Com-
puter Science 1592, Springer-Verlag, 1999.

